首页> 外文OA文献 >What Would a Graph Look Like in This Layout? A Machine Learning Approach to Large Graph Visualization
【2h】

What Would a Graph Look Like in This Layout? A Machine Learning Approach to Large Graph Visualization

机译:图表在此布局中的外观如何?机器学习方法   到大图形可视化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using different methods for laying out a graph can lead to very differentvisual appearances, with which the viewer perceives different information.Selecting a "good" layout method is thus important for visualizing a graph. Theselection can be highly subjective and dependent on the given task. A commonapproach to selecting a good layout is to use aesthetic criteria and visualinspection. However, fully calculating various layouts and their associatedaesthetic metrics is computationally expensive. In this paper, we present amachine learning approach to large graph visualization based on computing thetopological similarity of graphs using graph kernels. For a given graph, ourapproach can show what the graph would look like in different layouts andestimate their corresponding aesthetic metrics. An important contribution ofour work is the development of a new framework to design graph kernels. Ourexperimental study shows that our estimation calculation is considerably fasterthan computing the actual layouts and their aesthetic metrics. Also, our graphkernels outperform the state-of-the-art ones in both time and accuracy. Inaddition, we conducted a user study to demonstrate that the topologicalsimilarity computed with our graph kernel matches perceptual similarityassessed by human users.
机译:使用不同的方法来布置图形可能会导致非常不同的视觉外观,从而使观看者感知不同的信息。因此,选择“良好”的布局方法对于可视化图形很重要。这些选择可能是高度主观的,并取决于给定的任务。选择良好布局的一种常见方法是使用美学标准和视觉检查。然而,完全计算各种布局及其相关联的美学度量在计算上是昂贵的。在本文中,我们提出了一种基于机器学习方法的大型图形可视化方法,该方法基于使用图形内核计算图形的拓扑相似性。对于给定的图形,我们的方法可以显示图形在不同布局中的外观,并估计其相应的美学指标。我们工作的重要贡献是开发了一种新的框架来设计图形内核。我们的实验研究表明,我们的估计计算比计算实际布局及其美学度量要快得多。此外,我们的图形内核在时间和准确性上都优于最新的图形内核。此外,我们进行了一项用户研究,以证明使用我们的图核计算出的拓扑相似度与人类用户评估的感知相似度相匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号